skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Damerow, Joan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physical samples and their associated (meta)data underpin scientific discoveries across disciplines, and can enable new science when appropriately archived. However, there are significant gaps in community practices and infrastructure that currently prevent accurate provenance tracking, reproducibility, and attribution. For the vast majority of samples, descriptive metadata is often sparse, inaccessible, or absent. Samples and associated (meta)data may also be scattered across numerous physical collections, data repositories, laboratories, data files, and papers with no clear linkages or provenance tracking as new information is generated over time. The Physical Samples Curation Cluster has therefore developed ‘A Scientific Author Guide for Publishing Open Research Using Physical Samples.’ This involved synthesizing existing practices, community feedback, and assessing real-world examples to identify community and infrastructure needs. We identified areas of work needed to enable authors to efficiently reference samples and related data, link related samples and data, and track their use. Our goal is to help improve the discoverability, interoperability, use of physical samples and associated (meta)data into the future. 
    more » « less
  2. Bucci, Vanni (Ed.)
    Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. 
    more » « less
  3. null (Ed.)
  4. Abstract In recent years, the availability of airborne imaging spectroscopy (hyperspectral) data has expanded dramatically. The high spatial and spectral resolution of these data uniquely enable spatially explicit ecological studies including species mapping, assessment of drought mortality and foliar trait distributions. However, we have barely begun to unlock the potential of these data to use direct mapping of vegetation characteristics to infer subsurface properties of the critical zone. To assess their utility for Earth systems research, imaging spectroscopy data acquisitions require integration with large, coincident ground‐based datasets collected by experts in ecology and environmental and Earth science. Without coordinated, well‐planned field campaigns, potential knowledge leveraged from advanced airborne data collections could be lost. Despite the growing importance of this field, documented methods to couple such a wide variety of disciplines remain sparse.We coordinated the first National Ecological Observatory Network Airborne Observation Platform (AOP) survey performed outside of their core sites, which took place in the Upper East River watershed, Colorado. Extensive planning for sample tracking and organization allowed field and flight teams to update the ground‐based sampling strategy daily. This enabled collection of an extensive set of physical samples to support a wide range of ecological, microbiological, biogeochemical and hydrological studies.We present a framework for integrating airborne and field campaigns to obtain high‐quality data for foliar trait prediction and document an archive of coincident physical samples collected to support a systems approach to ecological research in the critical zone. This detailed methodological account provides an example of how a multi‐disciplinary and multi‐institutional team can coordinate to maximize knowledge gained from an airborne survey, an approach that could be extended to other studies.The coordination of imaging spectroscopy surveys with appropriately timed and extensive field surveys, along with high‐quality processing of these data, presents a unique opportunity to reveal new insights into the structure and dynamics of the critical zone. To our knowledge, this level of co‐aligned sampling has never been undertaken in tandem with AOP surveys and subsequent studies utilizing this archive will shed considerable light on the breadth of applications for which imaging spectroscopy data can be leveraged. 
    more » « less